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Abstract-We solve the problem of minimizing the weight of elastic cylindrical bars under given constraints
on their torsional and bending rigidities. The possible types of solutions are classed in the space of the design
parameters. The necessary optimality conditions are derived and then used in the formulation of a
closed·form boundary-value problem for a region with an unspecified boundary-the unknown
cross-sectional shape of the optimal bar. An analytical solution of this and other related problems in terms of
the given design parameters is obtained.

INTRODUCTIO!'l
Optimal design problems usually consist in determining the shape of a minimum-weight structure
whose mechanical properties fulfil certain specified requirements such as restrictions on its
stressed (strained) state, dynamic characteristics (such as the frequencies of natural vibrations),
buckling load, etc. The great majority of the problems attempted so far involved structures that
were required to perform some single function (so-called single-purpose structures, see, for
example, the review papers[l, 2]). Thus, for example, it was required to determine the shape of a
minimum-weight elastic structure under the condition that the fundamental frequency of its
natural vibrations exceeded a certain given quantity. Likewise, dual optimal design problems
were considered, whereby some mechanical property was optimized (maximized or minimized)
for a given weight of the structure (so-called quality criteria). Like the direct problems, the dual
ones were also usually reduced to the solution of an isoperimetric variational problem with a
single constraint.

However, in the optimal design process, as in the conventional one, it is often necessary to
include the actual working conditions of the designed structure (this involves a corresponding
increase in the number of parameters) and to design rather versatile structures that fulfil various
requirements (multi-purpose structures). Some simple examples of mUlti-purpose optimal design
are given in [3,4]. It may be mentioned that multi-purpose design problems arise not only in
deterministic situations, where it is desired to design a structure to given specifications (such as
constraints on strength, geometry and frequencies) and for various loading conditions, but also in
situations, in which a complete information about external influences (loadings) is absent
necessitating consideration of all possible practical realizations of such influences [5].

The present paper deals with the problem of minimizing the cross-sectional area (the weight)
of elastic cylindrical bars under given constraints on their torsional and bending rigidities. Such a
multi-purpose optimization problem differs from those studied earlier [3-6] in that it is no longer a
one-dimensional problem and is described by partial differential equations, the partial derivatives
entering both the differential equation and the necessary optimality condition. A closed-form
solution of this and related problems is given and some important implications of the method are
discussed.

1. STATEMENT OF THE PROBLEM

The following optimal design problem is posed. It is required to minimize the cross-sectional
area S (the weight) of an elastic cylindrical bar whose torsional (K) and bending (C) rigidities
satisfy the constraints K ~ Ko, C ~ Co, where Koand Co are given constants. It should, however,
be stressed that the bar is not expected to withstand external twisting and bending moments
simultaneously, but that during its design life it may be called upon to transmit twisting moments
part of the time, while at other times it may be expected to act like a beam. Such situations are not
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as rare in practice as may at first appear to be the case. In particular, they may arise at the design
stage when insufficient information is available on the actual working conditions to be faced by
the structure and allowance has to be made for various possibilities. A similar situation may exist
if the actual loading programme of the structure (for example, a programme involving twisting
followed by bending and so on) is specified beforehand.

We begin with a rigorous mathematical formulation of the problem. In this connection we
consider initially one by one the various design purposes of the structure. Thus, if the cylindrical
bar is required to transmit twisting moments M applied at its ends (i.e. it is working in pure shear
conditions), the torsional rigidity K. the angle of twist per unit length of the bar 8 and M must be
related through M = K8. To formulate this problem mathematically, we introduce a stress
function u = u(x, y) which is a solution of the boundary-value problem [7]

U" + U,,' = -2 x, y E D

u = 0 x, YE r. ( 1.1)

where D is the simply-connected region of integration (cross-section of the bar normal to its
length) and r is the boundary of the domain D, while subscripts denote differentiation with
respect to corresponding spatial variables.

The torsional rigidity K is expressed through u(x, y)

K = 2GLJu dx dy,

G being the shear modulus. The design constraint has the form

K ? Ko.

(1.2)

(1.3)

Next, we consider the case in which the bar acts like a beam. The primary mechanical
property of a beam is its bending stiffness C. Assuming the bending to take place in the plane yz
(z axis is directed along the length of the beam), C may be written as

(1.4)

E being the elastic modulus.
It is well-known that the bending stiffness (of a cylindrical bar) characterizes not only its

statical deflection pattern under transverse loads, but also the frequency spectrum of its free
vibrations. Thus, the greater the bending stiffness of the beam, the less will it deflect under
statical loads and the higher will be the fundamental frequency of its natural vibrations (for a
given mass). Therefore, the constraints on the maximum allowable deflection and on the dynamic
characteristics can be reduced to the following design requirement

C? Co. (1.5)

The optimization problem at hand consists in seeking the cross-sectional shape of the elastic bar
that fulfils the requirements (1.3) and (1.5) and has the least area S

S(r) = LJdx dy ->min. (1.6)

The mathematical problem is thus reduced to one with integral (1.2)-( 1.5) and differential (l.l)
constraints.

2. TYPES OF SOLUTIONS AND NECESSARY OPTIMALITY CONDITION

Let us analyse the types of solutions possible for the problem formulated. To do this, we
consider first the problem (1.\ H 1.3), (1.6). i.e. the problem of minimizing the cross-sectional area
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of a bar subject to only a single constraint-that on its torsional rigidity. It is not difficult to show
that this problem has a dual, viz, the problem of maximizing the torsional rigidity for a given area
S. The optimal solution of the problem (like that of the dual one, [8]) is therefore a bar of circular
cross-section with radius r = (2Ko/7rG)"4.

In general, the torsional and bending rigidities of a circular bar are related through
K = 2GC1E = C10 + 1'), I' being Poisson ratio. This expression corresponds to a straight line in
the plane K ~ 0, C ~ 0 (Fig. I), the slope of the line varying from 45° to 33·7° for 0:5 I' :5 1/2.
Every bar of circular cross-section corresponds to this line in the plane (K, C). If the specified
design constraints Ko, Co satisfy the inequality

G
Ko~2 E Co, (2.1)

i.e. they lie in the region I (Fig. I), the optimal solution is a circular bar. This follows from the fact
that if the inequality (2.1) is observed by a circular bar of torsional rigidity Ko, the bending
rigidity of such a bar must automatically exceed Co, i.e. the condition (1.5) is oversatisfied.

On the other hand, however, if the given design parameters violate the inequality (2.1), i.e.
they lie in the region II, both the constraints are of importance in deciding the shape (assumed
convex) of the optimal bar. They can be included in the mathematical formulation through the use
of the Lagrange multiplier technique.

It should be noted, that the plane K ~ 0, C ~ 0 contains no other regions in which the optimal
design is controlled only by inequality (1.5), inasmuch as, without violating the convexity
condition, it is possible to reduce the cross-sectional area of the bar indefinitely while keeping its
bending stiffness constant. This is easily explained by the example of a rectangular bar of width b
and depth h, for which S = bh and C = E bh 3/12. Assuming the bending stiffness to be given and
equal to Co and eliminating b from the expressions for Sand C, we get S = I2Col Eh 2

, whence it
follows that as h is increased, the area of cross-section can be reduced indefinitely.

It is thus necessary to seek a solution to the optimal design problem only in the region II.
Before proceeding to derive the necessary optimality condition, it is expedient to reformulate the
problem 0.1)-{1.6) by eliminating the differential constraint 0.1). This is easily accomplished
through the use of well-known results from the theory of elastic bars under torsion [7] and from
[9]. Without going into detail, it may be shown that

K = min.¥ 10 J(u/+ u/-4u) dx dy ~ Ko, (2.2)

where the minimum with respect to u is sought among a class of continuously differentiable
functions that satisfy the boundary condition u = 0 on r. The functional (2.2) includes the
differential equation (1.1), being its Euler equation, and thus brings this into picture only implicitly.

To derive the necessary optimality condition for the problem (l.4)-{1.6), (2.2), we employ the
Lagrange multiplier technique and construct an auxiliary functional

K

c

Fig.!.
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(the terms A1K" and A2 C" are omitted), and write the expression for its first variation

sn=! dfdS+A1¥! (u/+u,2-4U)dfdS+A~Ef y~dfds

+A1G In Jou(uxx +u,., +2)dxdy, (2.4)

where df denotes the normal displacement of points on the boundary due to a variation of the
region D. As u = 0 on rand df is arbitrary, the stationarity property SII = 0 gives the necessary
optimality condition

which may be rewritten in a more convenient form

(2.5)

with JLI = -2/A 1G and JL2 = -2A 2E/A 1G. These constants are determined using (lJ) and (1.5)

with K = K" and C = Co. Thus, the solution of the optimization problem (the cross-sectional
shape of least area and the corresponding stress function u(x, y)) can be found from the complete
system of equations (1.1)-(1.5) and (2.5), the equality sign holding in (1.3) and (1.5).

3. A~ALYTICAL SOLUTION OF THE PROBLEM

Guided by the necessary optimality condition (2.5), let us assume a solution of the type

f: x~ + exy ~ ay~ = b

u = (b - x 2- exy - ay2)N.

where the real constants a, b, e, N are to be determined together with the Lagrange multipliers JL I

and JL2. The assumed form of f and u is such that the boundary condition u = 0 on f is identically
satisfied. Evidently, if there exists a solution of the type (3.1), the constants must be uniquely
defined by (1.1)-( 1.5) and (2.5). The optimality condition (2.5) would require the cross-section of
the least area to be of the form

Equivalence between the assumed shape of the contour r and that specified by the optimality
condition would demand that

4~ e~ = 1; (e 2 +4a 2
- JL2/N 2

) = a

4(1+a)=I; JLt/N 2 =b.

whence it follows that a and e are respectively negative real and imaginary quantities-in
violation of the assumptions of convexity and simply-connectedness of f. Moreover, by dividing
the above equation throughout by (4 + e2

), it is easy to show that for e to be a non-zero real
quantity, either JL2 = 0 or N = 00, both of which are unacceptable on physical grounds. Thus it is
evident that the product term must be absent in the assumed form of r.

From the above considerations it follows that the solution should be of the form

f:x 2 + ay 2=b

u = (b - x 2
- ay2)N.

(3.1)

As the optimal cross-section transpires to be elliptical in shape the constants a and b could be
determined directly from simple expressions for the bending and torsional rigidities of an
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elliptical section. However, in order to specify the stress function uniquely we determine a, b, N,
III and Ilz from the following complete system of simultaneous equations

l+a=I/N

aZ- a - Ilz/4N z = 0; 1l1/4Nz
= b,

bZN /a 112 = Ko/G7T,

b z/a ~/2 = 4Co/ E7T,

(3.2)

(3.3)

(3.4)

(3.5)

where (3.2) follows from the differential eqn (1.1), (3.3)-from a comparison of the optimality
condition (2.5) with the assumed form of r (3.1), and (3.4) and (3.5) from the constraints (1.2) and
(1.4) (with K = K o and C = Co). In obtaining (3.4) and (3.5) it is convenient to map the region of
integration D bounded by r on to a unit circle through a linear transformation and to change to
polar coordinates.

Solving the system of simultaneous eqns (3.2)-(3.5) in a, b, N, III and Ilz, we get

a = 1/(13 - I), b = (Kof3/7TG)I/Z(l/f3 - 1)~/4,

N= (13 - 1)/13, III = 4(Ko/7TG)'IZ(f3 _I)S/4/f3 3IZ ,

Ilz = 4(2 - (3)/f3 z,

(3.6)

where 13 =4CoG /EKo• Note that, in view of the inequality (2.1), 13 ~ 2 in the region II. The shape
of the cross-section of least area and the corresponding stress function u(x, y) take the form

r:X Z+(I/f3 -I)yz = (Kof3/7TG)I/Z(I/f3 _1)~/4,

u = [(Ko{3/7TG)I/Z(l/f3 - If/4 - X Z- (1/13 -l)y z]({3 -1)/{3. (3.7)

Given the material constants E, G and the design constraints Ko, Co (satisfying the requirement
4CoG/EKo~ 2), the shape of the cylindrical bar that has the least area (weight) of cross-section
can easily be established using (3.7), the area SOP! being

(3.8)

In order to assess the economy achieved by optimizing the cross-sectional shape, let us compare
SOP! with that of a circular bar of the same bending stiffness Co as the optimal bar. It may be
remarked that, in region II, the torsional rigidity of a circular bar with bending stiffness Co will
always exceed Ko. The cross-sectional area So of such a bar in terms of Co is

(3.9)

whence, by using (3.8), it follows that

(3.10)

It is evident from (3.10) that for 13 = 2 (at the limit of validity to (3.7)), So is equal to Sop" i.e. a
circular bar is the optimal one, while for 13 > 2 it is possible to achieve a substantial economy in
the cross-sectional area (weight) of the bar.

4. SOLUTION OF RELATED PROBLEMS

There are two other problems which can be traced to the optimality condition derived above
(2.5). One of these involves the maximization of the torsional rigidity (K ~ max) of an elastic
cylindrical bar subject to given constraints on the area (weight) of its cross-section and the
bending stiffness

(4.1)
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The other problem deals with the maximization of the bending stiffness (C ~ max) under given
constraints on the area of cross-section and the torsional rigidity

K 2:K",

Ss:S".
(4.2)

For the first problem the plane (C 2: 0, S 2: 0) of the design parameters (Fig. 2) is divided into two
regions by the parabola C = ES'/41T. Moreover, if the specified design parameters C", S" satisfy
the inequality

(4.3)

i.e. they lie in the region I (Fig. 2), the cross-section of the bar of maximum torsional rigidity will
be circular in shape with radius r = V 1TSo. If, however, the constraints violate the inequality (4.3)
and thus fall in the region II, it is clear that both constraints will play their part in describing the
cross-sectional shape. As before, the optimal cross-section is elliptical in shape. Performing
calculations similar to those in Section 3. we arrive at

r:x'+ ay' = So(ex)'/'/1T

U = (So( ex )II!/rr - x! - ay ')(1 /I +a),

where ex =(ESo'/4Co1T )', the corresponding torsional rigidity KOPI being

(4.4)

(4.5)

Consider now the second problem-that of maximizing the bending stiffness of a cylindrical
bar subject to the conditions (4.2). As in the previous problem, the plane K 2: 0, S 2: 0 of the
design parameters (Fig. 3) is divided into two regions by the parabola K =GS 2/21T. However, in
contradistinction to the earlier two problems, if the specified constraints Ko, So are such that

(4.6)

i.e. they lie in the hatched region (Fig. 3), the problem at hand does not have a solution. This is
explained by the fact that, for the given relationship (4.6) between Ko and So to hold, the torsional
rigidity of a bar of no matter what cross-sectional shape (including circular) must be less than the
given value Ko• In the remaining part of the plane, in which Ko:S GS0

2/27T, the optimal elliptical
cross-section and the corresponding stress function take the form

r:x' + aye = S,,(a)JI2/ 1T

u = (So(a)'I2/ 1T - x' - ay!)(1/l + a),

the corresponding bending stiffness CPt being

c

(4.7)

(4.8)

r-@

Fig. 2.
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If'

where

and

s

Fig. 3.

(4.9)

The negative sign before the radical in (4.9) has been chosen with a view to securing the
maximum bending stiffness in the plane yz, (i.e. the longer of the two semi-axes of the elliptical
cross-section is directed along the y-axis). A positive sign would correspond to the lowest
bending stiffness for a bar of given cross-sectional area So and torsional rigidity Ko.

In conclusion, it may be remarked that the present method, involving an analysis of the
possible types of solutions, can be generalized to other multi-purpose optimal design situations
and to problems with a larger number of constraints. Moreover, within the framework of the
present mathematical formulation, it is possible to cover the optimization problem for a bar with
multiply-connected (hollow) cross-section (under the assumption that the shape of some of the
contours is prescribed, while that of the rest is to be determined). In this case the necessary
optimality condition (2.5) remains unaltered, but an effective method of solution would be a
perturbation technique similar to that used in [9].
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